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Abstract. This study reports the incorporation of
recently proposed formalism for the detection and
localization of multicenter bonding in molecules, the
so-called generalized population analysis, into the
framework of the atoms in molecules (AIM) theory.
The reliability of this new approach is tested by direct
numerical comparison of the values of multicenter bond
indices derived from both the original and the AIM-
generalized forms of the population analysis.
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Introduction

One of the most fundamental chemical concepts is the
tenet of the chemical bond. The first to correctly
recognize the electronic nature of the phenomenon of
chemical bonding was G. N. Lewis [1] and his idea that
chemical bonds are formed by shared electron pairs has
become one of the basic chemical postulates. The Lewis
theory assumed this sharing to take place between a pair
of atoms and, as a consequence, it was inherently able
to rationalize only the structure of molecules containing
the so-called 2-center 2-electron (2c-2e) bonds. Although
these bonds are certainly able to describe the structure of
the vast majority of molecules, there are nevertheless
some other systems whose bonding patterns are appar-
ently more complex. Typical examples in this respect are
the electron-deficient boranes and, in order to under-
stand their structure, the concept of 3-center bonding
has been invoked [2, 3]. The phenomenon of 3-center (or
generally multicenter) bonding is not, however, restrict-
ed only to electron-deficient boranes, but this type of
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bonding is also present in other non-classical systems
like metal clusters, distorted lithiocarbons, etc. [4, 5].
Moreover, the same concept was applied some time ago
to the elucidation of the phenomenon of hypervalence
[6-11]. Although in some cases the presence of multi-
center bonding can be predicted on the basis of simple
qualitative considerations (Lipscomb’s rules [12, 13]),
there are also other more complex systems where such
an approach is neither simple nor unique [14]. It was
therefore of special importance that a systematic theo-
retical procedure was proposed some time ago in terms
of which the eventual presence of multicenter bonding
could straightforwardly be detected. The formalism is
known under the name ‘“generalized” or ‘“non-linear
population analysis” [15-22] and using this approach
the structures of various non-trivial systems could be
explained [23, 24].

Despite the undeniable success of this new method-
ology in describing the phenomenon of multicenter
bonding, one has to be aware of the fact that in its
original form the whole formalism has some important
inherent limitations. These limitations arise from the use
of a Mulliken-like approximation [25] in calculating the
values of multicenter bond indices. As a consequence,
the generalized population analysis can be expected to
suffer from the same limitations as the well-known
Mulliken population analysis [26, 27]. Most of these
limitations can be reduced to a considerable extent
within Bader’s AIM theory [28]. In view of this superi-
ority one should ask whether it would not be possible
to avoid the limitations of the original formalism of
generalized population analysis by incorporating it into
the framework of the AIM theory.

Our aim in this study is to report such a generaliza-
tion. The paper is organized as follows. In the next
section the theoretical background underlying the in-
corporation of the whole hierarchy of generalized pop-
ulation analyses [21] into the framework of the AIM
theory is introduced. Some computational details related
to the application of the resulting approach to sys-
tems with both classical and non-classical bonding pat-
terns are subsequently reported. Finally, the values of



multicenter bond indices derived from both the original
Mulliken-like and the AIM-generalized population
analysis are discussed and compared.

Theoretical

The generalized population analysis [15-22] is based
on the idempotency property of SCF density matrix
expressed by the identity of Eq. (1)

FTr(PS)k:N : (1)
where P is the usual charge density-bond order matrix
and S the overlap one. Depending now on the actual
value of the exponent k, the identity [Eq. (1)] can be
partitioned into mono-, bi- and generally k-center
contributions [Eq. (2)] which can be attributed some
clear physical or chemical meaning.
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The simplest situation is for k=1, where the par-
titioning yields only monoatomic contributions whose
physical meaning is the Mulliken charge of the atom
[Eq. (3)].
4
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This definition of atomic charge can be generalized using
Bader’s virial partitioning [28] of one-electron density
function p(r) and within this approach Eq. (3) can be
expressed in the form of Eq. (4):

v=Y / plryir = SN (A) (4)

where the integration is performed over the atomic
region Q of the atom A, and N(A) is the corresponding
Bader’s charge of the atom A.

Another often used partitioning of the identity,
Eq. (1), is for k = 2 which, in the case of the Mulliken-
like approach, yields mono- and biatomic contributions
[Eq. (5)] that are identical with the well-known Wiberg
or Wiberg-Mayer indices [29, 30].

2ZZ (PS),,.(PS),,, = {Z WAA+ZWAB}

A#B
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The usefulness of these indices consists in that their
values often approach classical bond multiplicities and,
as such, they are sometimes called 2-center bond indices.
Although originally introduced rather heuristically [29],
these indices were shown to be related to the pair density
[20], and in fact they are equivalent to mono- and
biatomic contributions resulting from the Mulliken-like

partitioning of the so-called exchange part of the pair
density, Eq. (6) [31].
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Pexc(r1,72) = 5 p(r1)p(r2) = p(r1,72) (6)

In this formula p(r;,r;) denotes the pair density and
p(r1) the ordinary first-order density. This general
formulation is interesting because it opens up the
possibility of incorporating the definition of the bond
index into the framework of Bader’s AIM theory. Such
an incorporation was recently proposed by several
independent groups [32-35]." Within this approach, the
general definition of the correlated bond indices is

defined by Eq. (7):
—2/dr1/p(r1,r2)dr2
4 B

(7)

These quantities, introduced originally by Bader [38],
satisfy the normalization, Eq. (8), which can be regarded
as the generalized form of the identity, Eq, (2).

—> > F(4,B)=N (8)

This identity can be alternatively transformed to the
form, Eq. (9), analogous to Eq. (2):

N = ZQ +ZQAB (9)

A<B

1/2W,5 ~ —F(4,B) =

where the corresponding terms are straightforwardly
related to the above introduced F(A,B) quantities,
Eq. (10).

Q) = —2F(4,B) (10)

In the case of the SCF approximation the above
approach leads to the partitioning of the identity,

Eq. (11),

occ  occ

23D XD il alil s = N (11)

where (i | j), denotes the overlap integral of occupied
molecular orbitals i and j over the atomic region of the
atom A.

Having summarized the philosophy underlying the
incorporation of the hierarchy of generalized population
analyses into the framework of the AIM theory, let us
now extend the whole approach to the analogous gen-
eralization of the 3-center bond indices. For this purpose
it is useful to introduce the quantity F(A,B,C), Eq. (12),

F(4,B,C)
:6/dr1/dr2/p(r1ﬂ”2,i’3)d’”3 — N(4)N(B)N(C)

+ N(4)N(B) + N(4)N(C) + N(B)N(C) (12)

! Another AIM based definition of bond index was proposed some
time ago by Cioslowski [36, 37]. This definition is not, however,
based on the exact correlated pair density but on natural orbitals
and their occupation numbers
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where p(r(,r,r3) is the spinless third-order density,

Eq. (13):
:N(N_ 16)(N_2>/‘P2(r1,r2, ..... )

dO']dszO’}d)m....de (13)

and N(X) has identical meaning as in Eqgs. (4) and (7).

The above introduction of the 3-center bond index
straightforwardly follows from previous theoretical
studies [39, 40], in which the index was defined as the
expectation value of the operator, Eq. (14),

Ww“%—@ﬁﬂ%—@ﬁﬂ%—@%ﬁ

where ¢y denotes the operator of the number of
particles on the atom X.

Similarly, the 3-center bond index was indepen-
dently introduced also in the study [20], and Eq. (12)
is in fact nothing but the straightforward transcription
of the approach [20] into the framework of the AIM
theory.

The quantities F(A,B,C) satisfy the normalization,
Eq. (15),

%ZZZF(AB,C):N
A B C

and parallel to Eq. (9), the AIM-generalized partitioning
into mono-, bi-, and triatomic contributions can be
straightforwardly introduced, Eq (16).

N = ZQ +ZQB+ ZQABC

A<B A<B<C

P(V1,1’27V3)

(15)

(16)

In the closed shell SCF case this equation is transformed
into Eq. (17):

occ occ occe
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(17)
Eq. (17) has also been derived by Bochicchio et al.
using the second quantization formalism and field
operators and this derivation will be published else-
where [41]. Obviously Eq. (17) is the AIM counterpart
of Eq. (18):

A B C
S (BS),,(),(),, = N
A4 B C u v A

which defines the 3-center bond indices within the
ordinary Mulliken-like form of the generalized popu-
lation analysis. The partitioning of these equations then
allows the straightforward comparison of multicenter
bond indices within both approaches. Although 3-center
bonding certainly represents the most common type of
multicenter bonding, the above reported methodology
can straightforwardly be generalized also to other types
of non-classical bonds. Thus, for example, the eventual
existence of p-center bonding could be described within
the AIM theory by the function, Eq. (19)

(18)

F(A1,4,,...4,
—p'/drl/drg / p(ri,ra,...rp)dr,
A
—N(41)...N(4,) +N(A1) ..N(4p-1)
+N(41)...N(Ap-2)N(4p) + ... (19)
which satisfies the normalization, Eq. (20)
1
(1P ——=> Y F(di4s,... 4,) =N (20)
(p_ 1) A 4,

This formula reduces again in the closed shell SCF case
to Eq. (21):

occ occ

2ZZZZ<11 |i2>A
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(21)

which can be regarded as the AIM counterpart of the
Mulliken-like expression, Eq. (22):

%ZZ....ZZZ....Z(PS)W(PS)M....(PS)W:N

(22)

The above reported generalized methodology was
implemented in our laboratories and one of the basic
aims of this study is to compare the AIM-generalized
multicenter bond indices with their original Mulliken-
like counterparts. As the most common type of
multicenter bonding are 3-center bonds, the numerical
tests have been specifically performed for this particular
case.

Computations

Two types of calculations have been performed in this study.
In the first step the geometry of the studied molecules was
completely optimized within the ab initio SCF approach in the
Dunning-Huzinaga SDZVP basis set [42]. The calculations were
performed using the Gaussian 94 series of programs [43]. These
calculations primarily served to generate the density matrices and
integrals involved in Eq. (17) required for the above reported
analysis. The above methodologies were implemented in our
laboratories using our own codes, which can be obtained upon
request. The results of our calculations are summarized in
Tables 1-3 and in the next section the conclusion from our
analysis will be reported. Prior to presenting these results, it
is perhaps necessary to emphasize that our results have been
obtained within a closed shell SCF approximation which at pre-
sent represents the only level at which the above approach is
practically feasible. The generalization beyond the SCF approxi-
mation, although possible in principle, is quite difficult since it
would require the knowledge of correlated higher-order densities,
which are not at easily available from contemporary quantum
chemical programs. This is especially true of the correlated third-
order density, which, for obvious reasons, is not at present
available in any such program. A slightly better situation is with
the pair density, which is recently available from within Gamess
[32, 44] and in the near future could hopefully be available also
from pair-density functional theory [45, 46].



Table 1. Calculated values of
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ordinary and AIM generalized Molecule ABC (AB) Alize, Alie Qse, QUi Type Basis
3-center bond indices for a N [l b}
series of molecules containing Hj HHH 0.444 (0.444) 0.444 3c-2¢ 6-31G
three center bonds HH 0.444 0.444
Allyl cation CCC 0.305 (0.375) 0.409 3c-2e D95(p,d)
CC 0.138 0.284
B,Hg BHB 0.372 (0.375) 0.049 3c-2¢ DI95(p,d)
BB 0.404 0.010
Allyl anion CCC —-0.351 (-0.375) —-0.111 3c-4e D95(p,d)
CC 0.283 0.275
CO, 0CO —-0.267 (-0.75) —-0.048 3c-4e D95(p,d)
00 0.461 0.604
N,O NNO —-0.526 (=0.75) —-0.208 3c-4e DI95(p,d)
NO 0.682 0.668
Ny NNN —0.945 (-0.75) -0.363 3c-4de D95(p,d)
NN 1.174 1.081

Table 2. Calculated values of

@ Numbers in parentheses correspond to idealized values from the analytical model of 3-center bonds
1 this case the virial partitioning was impossible in D95(d,p) basis

bond indices for molecules not ~ Molecule Type Alfpe, Alie Ws Qlisc, Qliz Qs
containing multicenter bonds!® ]
H,0 O-H 1.354 (1.353) 0.902 0.936 (0.942) 0.628
H...H +0.014 0.000 0.028 0.007
HOH -0.014 - 0.016 -
NH, N-H 1.420 (1.407) 0.938 1.252 (1.279) 0.853
H..H 0.000 —-0.002 0.008 0.015
NHN -0.013 - 0.028 -
HHH 0.002 - 0.000 -
CHy4 C-H 1.481 (1.458) 0.972 1.388 (1.471) 0.981
H..H —0.003 —0.006 0.034 0.037
HCH -0.015 - 0.055 -
HHH 0.012 - 0.004 -

1 Al the data were calculated using D95(p,d) basis

[b

Table 3. Calculated values of 3-center bond indices of negatively
charged species in several basis sets

Molecule Basis Type AGhe Qhe

! Numbers in parentheses were calculated from the approximate proportionality, Eqgs. (23) and (24)

partitioning, Eq. (2), for k > 3, only a relatively very
small proportion of the terms attains non-negligible
values. Moreover, these non-negligible contributions are
localized only between certain groups of atoms which,

Allyl anion  6-31G CcccC -0.363 -0.142 interestingly, coincide with the regions where multicenter
6-31G** -0.322 -0.118 bonds are expected in the molecule. The typical example
6-31G+ + —0.410 —0.097 in this respect is the molecule of diborane, where in
D95(p.d) -0.351 —0.111 keeping with the presence of two 3-center bonds in BHB
D95+ + —0.472 —0.010 fragments [12, 13], only two non-negligible 3-center

Ny 6-31G NNN -0.965 -0.513 contributions exist in the partitioning, Eq. (2), for k = 3,
6-31G** —0.804 -0.367 and these contributions are indeed localized in two BHB
]6)3 é(G E)J’ :(1)84712 :8;2; fragments. Thig empiricgl finding opened' the way to
Dos f’ ¥ 0.518 ~0.361 the systematic investigation of molecules in which the

Results and discussion

The importance of generalized population analysis for
the detection of multicenter bonding arises from the
empirical observation that among the vast number of
three- or higher-center contributions resulting from the

presence of multicenter bonds was expected and, using
this approach, the structure of numerous complex
molecules could indeed be rationalized [23, 24]. The
interpretation of multicenter bond indices was subse-
quently put on a safer theoretical basis by introducing
a simple analytical model of 3-center bond [21, 47].
In terms of this model it was not only possible to
understand the numerical values of 3-center bond indices
but also to use them for the characterization of the
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nature of these bonds. Thus, for example, the positive
value of the 3-center bond index indicates a three-center
two-electron (3c-2e) bond, while the three-center four-
electron (3c-4e) bonds are characterized by the negative
value of the index. Despite the undeniable usefulness of
these indices for structural elucidation of non-classical
systems, it is true that because of being based on
Mulliken-like partitioning, this approach can be expect-
ed to suffer from similar deficiencies that are known to
affect the ordinary Mulliken population analysis [26, 27].
These deficiencies are to a considerable extent reduced
within Bader’s AIM theory and the primary aim of this
study is to report the extension of the original formalism
into the framework of this theory. Starting from this
extension, the second aim of this study is to report
a detailed numerical comparison of both approaches
and to evaluate thus the reliability of AIM-generalized
analysis for the detection of multicenter bonding in
molecules.

For this purpose we have chosen a series of simple
molecules (H7, allyl cation, B,Hs, allyl anion, CO,,
N,O, N7), for which the presence of 3-center bonds is
widely accepted and was also detected by the original
Mulliken-like 3-center bond indices. The results of our
calculations are summarized in Table 1, in which both
original and AIM generalized bond indices are included.
Consistent with what was said above, only the non-
vanishing values of 3-center indices are given and, as it is
possible to see, these contributions are in all cases lo-
calized in regions where the 3-center bonds are expected.

The first conclusion that can be deduced from This
table is that there is no qualitative difference in the
predictions of both alternative approaches so that the
regions detected to contain 3-center bonds within one
approximation are similarly identified also using the
other approach. In addition to this first qualitative
conclusion, one can also appreciate the close corre-
spondence of both approaches in characterizing the
nature of 3-center bonds. Thus, for example, the 3c-2e
bonds in H7, allyl cation, and B,Hs are in all cases
correctly characterized by the positive value of the index,
while the negative sign of the index in the remaining
cases is clearly consistent with the 3c-4e nature of the
bonds.

Despite close parallel of both approaches at a quali-
tative level, there are, nevertheless, some quantitative
differences that need to be discussed. These differences
concern, above all, the comparison of actual numerical
values with the expectation resulting from the analytical
model of the 3-center bond [21, 47]. The idealized values
from this model are also included into Table 1 and, as it
is possible to see, the actual values from Mulliken-like
partitioning do not differ too much from these limits in
most cases. This result is not very surprising since the
analytical model is also based on the idea of Mulliken-
like partitioning. On the other hand, the situation with
the AIM-generalized indices is slightly more complex, as
no simple analytical model can evidently be formulated
for virial partitioning. The only exception is the case of
the highly symmetrical Hy ion for which both original
and AIM generalized indices are evidently identical.
Although it is true that the AIM-generalized indices

cannot be quantitatively related to any analytical model,
it is nevertheless the case that some AIM generalized
values in Table 1 are relatively low compared to others.
This concerns above all the case of B,Hg. This huge
reduction is indeed very interesting since nothing similar
is observed for the ordinary Mulliken-like analysis and,
moreover, the existence of 3-center BHB bonds in this
molecule is beyond any doubt. For this reason we hesi-
tate to accept the interpretation offered in [32], in which
the existence of 3-center bond in this molecule was
questioned and we rather prefer to seek a possible ex-
planation of this puzzling failure. Such an explanation
requires us to scrutinize the results of the generalized
population analysis in more detail and to concentrate
also on the values of other bond indices. Thus, for ex-
ample, the existence of a 3-center bond in some fragment
ABC necessarily requires the existence of non-negligible
bonding interactions between terminal atoms [21, 33].
The values of the corresponding 2-center bond indices in
systems like HY, allyl anion, allyl cation, etc., for which
no reduction of the AIM 3-center index was observed,
are indeed consistent with this expectation. These results
contrast, however, with the value of the AIM index
between non-bonded boron atoms, which displays a
dramatic decrease. A possible explanation of this strong
reduction of B---B bonding interactions can be offered
in terms of the approach proposed some time ago by
Mayer [48]. The central idea of this approach is the
concept of the so-called “‘effective AO’s within the AIM
theory”. In terms of this approach, the reduction of the
B- - -B bond index can be attributed to low or negligible
population of effective AO’s on either bridging hydro-
gens or borons. Such a situation would manifest itself in
the AIM charges on the bridging hydrogens, which
would be close to —1. The actual AIM charge is —0.72.
This clearly suggests that the bonding situation corre-
sponds in this case to the low population of the effective
AQ’s on boron and the observed reduction of the AIM
3-center BHB index can thus apparently be attributed
just to this low population. This low population also
affects the value of the total AIM charge on the boron,
which is equal to +2.14. Moreover, if this charge is
compared with the analogous charges on individual
hydrogens (—0.72 for bridging H, —0.71 for terminal H),
the electron distribution reflected by the AIM analysis
suggests the BH bonds to be very polar. This, however,
is quite different from the picture of bonding resulting
from the ordinary Mulliken-population analysis and the
question thus may naturally arise, which of the two
analyses is the more realistic. Generally one would ex-
pect that AIM analysis should be superior but as the
bond indices from this analysis so dramatically contra-
dict the generally accepted model of two 3c-2¢ BHB
bonds, we rather believe that the failure of AIM theory
to detect 3c-2e BHB bonds is due to an insufficiently
realistic density function on which the analysis is based.
This belief is also supported by the analysis of the to-
pology of electron distribution where the existence of a
bond path and the bond critical point was detected be-
tween bridging hydrogens together with two ring critical
points situated inside of the bridging HBH fragments.
This type of bonding topology seems rather consistent



with the existence of HBH 3c-2e bonds and the value
of the corresponding 3c index, albeit still rather low, is
indeed higher than for BHB fragments (0.052 vs. 0.049).
As, however, the existence of a bond between two neg-
atively charged hydrogens is very unlikely, it is probable
that the above found topology is not sufficiently realistic
and we believe that further improvement of the quality
of the calculations will result in the correction of this
probable bias. A systematic study of the basis set de-
pendence of bonding topology in diborane and B,Hg
and other boranes is being pursued in our laboratory
and the results will be published elsewhere.

Summarizing the above results we can conclude that
although the above introduced AIM generalization is
apparently able to detect the presence of multicenter
bonds in molecules, some questions concerning the
manifestations of multicenter bonding within the AIM
theory, especially in electron-deficient boranes, still
remain to be clarified.

Having demonstrated the relatively close parallel of

the original Mulliken-like and the AIM generalized
formalism, let us scrutinize now another important
aspect of both approaches. This aspect concerns the
above-mentioned empirical fact that in the case of ab-
sence of multicenter bonding, the values of all the cor-
responding multicenter indices are very small. In order
to demonstrate this particular aspect, we report the
values of bond indices for several simple molecules for
which no 3-center bonding is expected (H,O, NH3, CHy)
in Table 2. Consistent with the above expectation, the
values of all 3-center bond indices are in these cases
really very small and the only non-vanishing values are
observed for 2-center contributions corresponding to
pairs of classically bonded atoms. These contributions
thus express the connectivity between the atoms in the
same way as the well-known Wiberg indices (or their
AIM generalized counterparts). The detailed relation
between these two types of indices was recently discussed
in our study [49] where we showed that in the case of the
absence of 3-center bonding, the A3 are related to Wap
by simple proportionality, Eq. (23).
A~y (23)
As it is possible to see from Table 2, this simple relation
is indeed satisfied with surprising accuracy. But, as can
also be seen from this Table, the same proportionality
holds also in the case of AIM generalized indices,
Eq. (24):

3

Q ~ 39 (24)
This result is very interesting since it demonstrates that
the AIM generalized bond indices can be interpreted
quite similarly as the original Mulliken-like ones. This
also concerns the molecules containing 3-center bonds,
where the original formulas of Egs. (23) and (24) have to
be modified by taking into account the interfering effect
of multicenter contributions [49].

The final aspect of original Mulliken-like and AIM
generalized population analyses which we are going to
discuss concerns the basis set dependence of multicenter
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bond indices. As we have already said above, such a
dependence can generally be expected for any kind of
Mulliken-like population analysis and this was in fact
one of the reasons for introducing the reported gener-
alization. The problem of the basis set sensitivity of the
original multicenter bond indices was addressed in pre-
vious studies [50, 51] where it was shown that it is not
serious enough to question the qualitative picture of
bonding suggested by the corresponding indices. This,
however, is true only for neutral molecules or cations,
where the increasing flexibility of the basis sets causes
the values of indices to more or less steadily converge to
some limits. As will be shown, however, in this study, the
deficiencies of Mulliken-like partitioning may become
very serious for negatively charged ions for which the
extended basis sets with additional diffuse functions are
generally required. This can clearly be demonstrated by
the data in Table 3 in which the 3-center bond indices
for allyl anion, and Nj, in several basis sets are sum-
marized.

The deficiency of Mulliken-like indices, especially for
extended basis sets, can clearly be demonstrated by the
value of the 3-center bond index in the azide ion where
one can observe the complete reversal of the sign. The
fact that this reversal is to be regarded as an artifact of
the Mulliken-like partitioning can clearly be demon-
strated by comparing with the analogous AIM general-
ized indices. As expected, the basis set dependence of the
index is in this case less dramatic. The indices steadily
converge to some limiting value whose sign, quite in
keeping with the expected 3c-4e nature of NNN bond, is
negative in all cases.
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